

4D Neutron Imaging on Textured Samples

Nancy Naguib Elewa

Ain Shams University Nancy_nagib@sci.asu.edu.eg

My Background

- PhD in physics from University of New South Wales (Australia)

- Postdoc in European Spallaton Source (ESS) on BEER diffraction beamline in cooperation between 15 EU country and Japan
- Worked in different countries and reactor/spallation sources (such as ANSTO –Australia, JPARC – Japan, HZB - Berlin, PSI -Switzerland, UJF - Czech Republic)

-Member in the national committee of crystallography (2023)

Beamtime	Data Processing Update
----------	------------------------

Some of the python codes used for the data analysis are found in

https://github.com/nancynaguib/imaging-python

Beamtime Outline

Experimental setup

Experimental setup

- 46 projections over 360 degree for Stress 1 and Stress 6
- 25 min exposure time

Experimental setup

Flux:

 $1.3 \times 10^{6} \text{ n/s/mm}^{2}$

Wavelength: 0.4 - 4.4 Å

Spatial resolution: 55 µm

wavelength resolution: 0.2%

j-PARC

EUROPEAN

SPALLATION SOURCE

ess

Bragg edge transmission imaging Background

- At certain hkl plane, the scattering angle increases with λ increases (red)
- Till θ

Bragg edge transmission imaging	Textured samples
---------------------------------	------------------

- The two angles (0° and 30°) look similar indicating no

textured is observed in this sample

Tomography at two angles show strongly textured structure sample

Texture anaylsis

Beamtime	Texture anaylsis

• The texture for the three states at the three Bragg edge positions for austenite phase; (220),(200) and (111)

٠

Experimental setup

Rietveld fitting for diffraction pattern for the virgin state confirms the austenite single phase

Nancy Naguib, 2023 Page 13

Beamtime SENJU

CT reconstruction and angle correction

• The idea is to get the phases from the CT reconstruction, however we need to get the best quality CT slices.

Beamtime SENJU

Wavelength for CT reconstruction

- The idea is to get the phases from the CT reconstruction.
 - Stress 1 was all Austenite FCC and Stress 6 was mixed phase, some Martensite appear
 - I choose to do CT around 4.15 A (Austenite peak)

Ş

Beamtime SENJU

CT reconstruction

The middle gauge has lower intensity as result of lower percentage of the FCC phase

The Intensity is nearly uniform over all the sample

Beamtime SENJU

CT reconstruction

Take home message

X ray diffraction, neutron diffraction and neutron imaging are very powerful tools to study materials and correlate their structure with their properties

Acknowledgements

HZB Helmholtz Zentrum Berlin

Søren Schmidt DTU

Petr Sittner UJF

Luise T. Kuhn DTU

Anton Tremsin

Camilla Larsen

UJF

U of Manchester

Robin Woracek Morten Sales DTU

Anders Dahl DTU

Rune Johnsen

DTU

Monica Lacatusu

Patrick Tung UJF

